Eventual Regularity of the Two-Dimensional Boussinesq Equations with Supercritical Dissipation

نویسندگان

  • Quansen Jiu
  • Jiahong Wu
  • Wanrong Yang
چکیده

This paper studies solutions of the two-dimensional incompressible Boussinesq equations with fractional dissipation. The spatial domain is a periodic box. The Boussinesq equations concerned here govern the coupled evolution of the fluid velocity and the temperature and have applications in fluid mechanics and geophysics. When the dissipation is in the supercritical regime (the sum of the fractional powers of the Laplacians in the velocity and the temperature equations is less than 1), the classical solutions of the Boussinesq equations are not known to be global in time. Leray–Hopf type weak solutions do exist. This paper proves that suchweak solutions become eventually regular (smooth after some time T > 0) when the fractional Laplacian powers are in a suitable supercritical range. This eventual regularity is establishedby exploiting the regularity of a combined quantity of the vorticity and the temperature as well as the eventual regularity of a generalized supercritical surface quasi-geostrophic equation. Communicated by Peter Constantin. Q. Jiu School of Mathematics, Capital Normal University, Beijing 100037, People’s Republic of China e-mail: [email protected] J. Wu (B) Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078, USA e-mail: [email protected] W. Yang Department of Mathematics, Beifang University of Nationalities, Ningxia 750021, People’s Republic of China e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Criteria for the 2d Boussinesq Equations with Supercritical Dissipation∗

This paper focuses on the 2D incompressible Boussinesq equations with fractional dissipation, given by Λαu in the velocity equation and by Λβθ in the temperature equation, where Λ= √−Δ denotes the Zygmund operator. Due to the vortex stretching and the lack of sufficient dissipation, the global regularity problem for the supercritical regime α+β<1 remains an outstanding problem. This paper prese...

متن کامل

The Two-Dimensional Incompressible Boussinesq Equations with General Critical Dissipation

The two-dimensional incompressible Boussinesq equations with partial or fractional dissipation have recently attracted considerable attention and the global regularity issue has been extensively investigated. This paper aims at the global regularity in the case when the dissipation is critical. The critical dissipation refers to α + β = 1 when Λα ≡ (−Δ)α2 and Λβ represent the fractional Laplaci...

متن کامل

GLOBAL REGULARITY CRITERIA FOR THE n-DIMENSIONAL BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION

We consider the n-dimensional Boussinesq equations with fractional dissipation, and establish a regularity criterion in terms of the velocity gradient in Besov spaces with negative order.

متن کامل

Well-posedness and Inviscid Limits of the Boussinesq Equations with Fractional Laplacian Dissipation

This paper is concerned with the global well-posedness and inviscid limits of several systems of Boussinesq equations with fractional dissipation. Three main results are proven. The first result assesses the global regularity of two systems of equations close to the critical 2D Boussinesq equations. This is achieved by examining their inviscid limits. The second result relates the global regula...

متن کامل

The 2d Boussinesq-navier-stokes Equations with Logarithmically Supercritical Dissipation

This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015